Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

Lycée Valéry Giscard d'Estaing 63400 Chamalières

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Actualités
    • Coup de coeur
    • Prix manga
    • Les Pages volcaniques
    • Harcèlement
    • A table ! BTS 2025
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche avec PMB

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
« Représentations géométriques » in Tangente. Hors-série (Paris), 063 (05/2017), p.23-40.

Représentations géométriques
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Représentations géométriques (2017)
Type de document : Article : texte imprimé
Dans : Tangente. Hors-série (Paris) (063, 05/2017)
Article en page(s) : p.23-40
Langues de la publication : Français
Descripteurs

[UNESCO] fractale

[UNESCO] nombre complexe

[UNESCO] transformation géométrique

Résumé : Dossier consacré aux nombres complexes. La réalité visuelle des nombres complexes. Les isométries du plan (symétries, translations, rotations) et leur représentation avec les nombres complexes ; démonstration avec un parallélogramme. Les isométries et l'ensemble des similitudes directes par leur description à l'aide des nombres complexes. Encadrés : l'inversion comme transformation géométrique du plan et le théorème de Mohr-Mascheroni ; l'image d'une droite par l'inversion ; l'inverseur de Charles Peaucellier (dispositif mécanique) ; Caspar Wessel et son "Essai sur la représentation analytique de la direction" ; Jean-Robert Argand et son "Essai sur la manière de représenter les quantités imaginaires dans les constructions géométriques" ; le rôle de Carl Friedrich Gauss dans la diffusion des nombres complexes. Les ensembles de Julia (Gaston Julia) comme représentations des ensembles particuliers de nombres complexes. L'utilité des nombres complexes en géométrie et l'apport de René Descartes. Encadrés : le théorème de Thébaud ou théorème de van Aubel relatif au parallélogramme ; le théorème de Napoléon et le triangle équilatéral. La rencontre entre le monde de l'algèbre et celui de la géométrie avec le théorème de Marden.
Note de contenu Bibliographie.
Nature du document : documentaire
Ancien numéro de notice : MF17091115571486

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
31772PERPériodiqueCDICDI- rdcDisponible
Nouvelle recherche
Haut de page

Contact

04/73/31/74/50

0631669x-cdi@ac-clermont.fr

Lycée VGE de Chamalières

Liens utiles

  • Logo bas de page
  • Médiathèque de Chamalières
  • Mentions légales
  • Plan du site